41

QUANTITATIVE X-RAY STRUCTURE DETERMINATION
OF SUPERLATTICES AND INTERFACES

IVAN K. SCHULLER*, ERIC E. FULLERTON*, H. VANDERSTRAETEN**, AND Y.
BRUYNSERAEDE**

*Physics Department 0319, University of California - San Diego, La Jolla, California 92093,
USA

**Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven,
B-3001 Leuven, Belgium.

BSTRA

We present a general procedure for quantitative structural refinement of superlattice
structures. To analyze a wide range of superlattices, we have derived a general kinematical
diffraction formula that includes random, continuous and discrete fluctuations from the average
structure. By implementing a non-linear fitting algorithm to fit the entire x-ray diffraction profile,
refined parameters that describe the average superlattice structure, and deviations from this
average are obtained. The structural refinement procedure is applied to a crystalline/crystalline
Mo/Ni superlattices and crystalline/amorphous Pb/Ge superlattices. Roughness introduced
artificially during growth in Mo/Ni superlattices is shown to be accurately reproduced by the
refinement.

INTRODUCTION

The study of the structure of superlattice has received increased interest in recent years.
Much of this interest is the result of the wide range of new physical phenomena observed in these
systems. The presence of the additional periodicity of the layered material often leads to unique
magnetic, transport, mechanical, and superconducting properties[1]. The understanding of the
physical properties is limited by the characterization of the samples. Many of the physical
properties depend sensitively on structural properties such as interdiffusion, crystallinity, strain,
and roughness making structural characterization a prerequisite to understanding the physical
properties.

X-ray diffraction is a technique that is well suited for studying the structure of
superlattices. It is non-destructive and can provide structural information on the characteristic

length scales of the superlattice, the modulation wavelength A and the lattice spacing. Because
the scattered x-ray intensity is measured, the phase information is lost. It is impossible to
directly convert the measured intensities to obtain the structure. Modeling of the superlattice is
required to compare the calculated intensity of the modeled superlattice with the measured
intensity. By fitting the measured intensity profiles with model calculations it is possible to
obtain the structure. This type of structural characterization is commonly used in x-ray and
neutron diffraction from bulk powder crystals using the Rietveld refinement procedure[2,3]. In

Mat. Res. Soc. Symp. Proc. Vol. 229. ©1991 Materials Research Society

203



42

Rietveld refinement, the structure of a single unit cell is modeled and the relative intensity of the
diffraction peaks is determined from the structure factor of the unit cell. The difference with the
present refinement technique is that here the relative intensities and the line profiles are used to
determine the average unit cell and the statistical deviations from this average.

In many superlattices, the structural coherence length, &, derived from the full width at

half maximum of diffraction peaks using Scherrer's equation, is limited to only a few times A,
due to structural disorder. The type and amount of structural disorder can greatly affect the
relative intensity of the diffraction peaks and disorder parameters need to be included in a model.
Because many types of disorder can be present in a superlattice including layer thickness
fluctuations, interface disorder, crystalline disorder, and interdiffusion, a large number of model
parameters have to be included which makes a refinement procedure much more difficult.

In this paper we use a general kinematic diffraction model that includes both the average
atomic structure of the layers and structural disorder to fit the measured x-ray diffraction profiles
of a variety of superlattice structures. By fitting the measured profiles, it is possible to
quantitatively determine both lattice constants and disorder parameters. We will present
refinement results on a sputtered Mo/Ni superlattice in which disorder was introduced during
growth and crystalline/amorphous Pb/Ge superlattices grown by molecular beam epitaxy. A
detailed version of this work including a discussion of the theoretical approach, refinement
procedure, and quantitative comparison of the refinement results of disorder, lattice parameters,
and chemical composition with independent measurements has been submitted for publication[4].

THEORETICAL FORMALISM

To fit the measured x-ray diffraction profiles with a variety of structural models, we have
developed a general kinematical expression, which includes both discrete and continuous
cumulative disorder. Discrete disorder refers to fluctuations in layer thicknesses of which are an
integer number lattice spacings. Continuous disorder refers to structural parameters that vary in a
continuous way like the thickness of an amorphous layer.

The general model of a superlattice consists of a stack of M bi-layers of material A and B,
as shown in Fig. 1. The layers are characterized by the structure factors Faj, Fp; and thicknesses
taj tgj of materials A, B in the jth bi-layer and the interface distances separating the layers are
given by auj and agj. The model in Fig. 1 explicitly includes only inter-layer disorder and no
assumptions are made about the crystal structure of the layers. The one dimensional structure
factor for a superlattice with M bi-layers with cumulative layer thickness fluctuations can be
written as :

M
F(g) = E expliqx;) (Fa; + expliq(taj + aa;))Fa;)
j=1
il (N

where x; = Z tas + 8as + IBs + aBs
s=1

and q is the scattering vector given by g= 4nsin(6)/Ax. The scattering intensity is given by
I(q)=<F(q)F*(q)> [5] where the brackets are an ensemble average over all possible Fyj, Fgj, t
JIBj» @aj, and agj. The expression for I(q) can be written in a closed form if each layer is
assumed to be statistically independent in a similar fashion as the original intensity calculations
by Hendricks and Teller[6] which included the effects of random sequencing of layers.
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Fig. 1: Representation of a superlattice consisting of layers of materials A and B,
with thicknesses ty j, tg ; and structure factors F aj» Fpj The layers are separated
by interface distances ay ; and ag ;.

For a lattice mismatched incoherent interface, the lattice positions are not well defined
which leads to variations in the interface distance. Therefore, we will assume that the interface
distances a,; and ag; vary in a continuous manner, as was done in our previous work.[7,8] To
simulate sucﬁ variations, a Gaussian distribution of width ¢ about an average interface value a is
assumed for both interfaces as and ag. The intensity for a superlattice with M bi-layers can be
written as:

1q) = M[ (FAF*A) + 2 Re [e€ @ Fp) + (FaFrp)]

+ 2 Re [[c‘g(bB FATA'ITB'I + Dy F& TA'] +@p Fy TB'I + 5Dy ﬁ};] @

¢ |M-(M+1) eXTsTy +[=2§TATB]M+1 _ M} }
(1-exT,TRf

where = iqa - q2¢2/2, Re designates the real part of the term in the bracket and the following
averaged parameters are defined by:



@, = (expligra) F*a),  @p = {exp(iqts) F*p)
Ta={expligtal), Tr = {expliqa)) (3)

Fo=(Fa), Fs=(Fn)

Because the layers are assumed to be statistically independent, the expression for I(g) can
be written in terms of the averaged parameters of the layers of material A and B (equation (3) )
independent of the number of layers in the superlattice. We would like to stress that all disorder
is cumulative which leads to broadening of the diffraction peaks and is not equivalent to an
effective Debye-Waller coefficient[5].

To calculate I(q) for an explicit model using equation (2), the averaged quantities @4,

@, Ta, Tp, Fa, Fp, (FAF*,), and (FgF*p) have to be calculated. These averaged quantities
include both the average structure of the layers and the statistical fluctuations of the layers
throughout the superlatice. For discrete disorder, the averages can be calculated by summing
over all the possible F; and Fg; with corresponding ta; and tg; weighted by the probability of
occurrence. Continuous disorder requires integration of the bracketed quantity over all the
possible values of the continuous variable weighted by the probability of occurrence. The effect
of these fluctuations on the x-ray diffraction profile of a superlattice is determined by the
parameters of a single unit cell. The specific type of structural order within a layer can be
crystalline, amorphous, or any other suitably chosen structure and equation (2) can be shown to
agree with previous model calculations when a suitable crystal structure is chosen[5-11].

The model we use for a crystalline layer allows for variation of the lattice constant near
the interface as shown in Fig. 2. The crystalline layer is described by N atomic planes which are
separated by a lattice constant d. Three atomic planes near the interface are allowed to expand or

contract an amount Ad;e"®and Adse™®, where n=0,1,2 corresponds to the first, second, and
third atomic plane away from the interface. o is the constant that determines the decay of the

strain away from the interface and is typically assumed to be 0.5. The structure factor for this
layer is given by:

Fi(q@) = £[1 +explig(d+Ad,)) + - - + expligl(Nj- 1)d+{Ad; +Ad, ) 1+e-e-+e-20)) @)

Each layer is assumed to have an integer number of planes which varies about an average

value N. The average number of planes does not have to be restricted to an integer value. The
distribution of the number of planes N; for material A and B is given by a discrete distribution

about the mean values N4 and Ng with widths s and sg. For large values of s, the distribution
approximates a Gaussian distribution, and for small values the weighted average of the nearest
integers. The terms in equation (3) are determined by averaging the quantities within the brackets
for various N; weighted by the probability of occurrence.
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Fig. 2 Representation of a crystalline layer which is strained towards the interfaces.

Lines represent atomic planes. Ad;, Ads, and o determine lattice deviation near the
interface.

An amorphous layer such as Ge can be simulated by setting the scattering power of a
layer equal to zero. To simulate a more intermediate amount of intra-layer disorder between a
perfectly crystalline and amorphous layer, the positions of the atomic planes of a crystalline layer
are allowed to vary randomly. If the random variations of the planes are non cumulative, the
effect of the variation will be equivalent to thermal fluctuations and can be modeled by an
effective Debye-Waller parameter multiplied to the scattering factor of the layer. If the disorder is
cumulative, the scattering factor of a layer with N atomic planes with lattice spacing d is given

by:

okl
F=f) expi jd+23r]]
= i (5)

where 0; is the deviation of the (j+1)* atomic plane. If the values dj are assumed to vary

independently in a continuous Gaussian distribution about zero with a width 8, the averaged
terms in equation (2) for an integer value of N can be written as:

f=f[1_-ﬂ], @:ﬂ[l_-g_w_ﬂ], T =e(N-1)B
1-¢b 1-¢P
(6)

(F F*) = ff* [-N +2 RelN - (N+1) eB + e(N-1) B} }

(1-e8

where B = iqd - q282f‘2.
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EITTING RESULTS

The refined parameters are determined by least squares fitting the measured x-ray
diffraction profile. The fitting procedure used was the Levenberg-Marquardt algorithm [12]
where the structure parameters of the average unit cell including statistical fluctuations (equation

(3)) are adjusted to minimize %2, the difference of the calculated and measured profiles squared.
All calculated intensities include an absorption correction and Lorentz-polarization factor. The
scattering power of each atomic plane is given by the atomic scattering factor, including Debye-
Waller coefficients, times the in-plane density.

To determine the sensitivity of x-ray structural refinement to cumulative layer thickness
fluctuations, we have grown a series of Mo/Ni superlattices where layer thickness variations
were introduced during the growth of the samples. The samples were made by DC magnetron
sputtering onto ambient temperature silicon substrates[9]. The substrates were rotated over the
targets and held for predetermined amounts of time by a computer controlled substrate holder to
achieve the desired modulation wavelength. To introduce disorder into the layer thicknesses, the
deposition time of the materials was varied randomly for each layer so that the layer thicknesses
approximated a Gaussian distribution about the average layer thickness. Samples were made
with thickness variations of only one of the constituent materials or with variations in both
layers.

Mo/Ni can be grown as high quality superlattices, with the Mo bec[110] and the Ni
fce[111] planes oriented perpendicular to the growth direction. X-ray scans were performed
about the first order (bee[110]/fcc[111]) and second order (bee[220]/fcc[222]) portion of the x-
ray profile. Examples of the diffraction profiles are shown in Fig. 3 for [Mo(20A)/N i(22A))130
superlattices, where the values in parentheses refers to the average layer thickness and the
subscript gives the total number of bi-layers. Figure 3a shows the diffraction profiles of a
sample without artificial roughness and Fig, 3b and 3c for samples with 2.7 A artificial
roughness added to Ni and Mo respectively. The circles are the measured x-ray intensity and the
solid line the structural refinement. The arrows indicate the expected peak positions for Mo and
Ni. The effect of the additional disorder can be seen in both the relative intensity and linewidth
of the profiles. As was predicted from earlier calculations[8], increased disorder of the Mo (Ni)
layers leads to broadening of the superlattice peaks associated with Ni (Mo). The second order
superlattice peaks are much more sensitive to discrete disorder. 2.7A of artificial disorder is
enough to almost completely suppress the second order high angle superlattice peaks.

The parameters used in the refinement were the interface distance a and continuous
fluctuation width c, the average number of atomic planes Ny, and Ny, the standard deviation in
layer thickness resulting from discrete disorder sy, and sy, the lattice parameters dmo, AdMo1,
Adpo2, dni, Adni1, and Adyip. The exponential o that defines the decay distance of the lattice
deviation away from the interface was set atc =0.5.

The results of the structural refinement values of sy, and sn; can be directly compared to
the amount of additional artificial disorder introduced during imwlh. The samples without
additional disorder have typical discrete disorder values of 1.0 A indicating the layers vary on
average less than one monolayer. The value of the continuous disorder was 0.18 A which is in
agreement with the values determined by Locquet et al.[7] and is close to the difference in the
lattice spacing of Mo and Ni of 0.2 A. The amount of additional structural disorder, determined
from the fits shown in Fig. 3 from the first (second) order peaks, is for Ni 2.0 (3.3) A and for
Mo 1.0 (2.6) A, which is in good agreement with the values added during growth, There is a
small discrepancy between the values determined from the first and second order portion of the
profiles, with the second order values in better agreement with the growth value. A possible
explanation for the difference is that the second order peaks are much more sensitive to discrete
disorder and should give a more accurate measure of the disorder for a small amount of
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Fig. 3: Experimental profiles (o) and refined calculations (full lines) of three
E\do(Z{)A){Ni(ZZA)]m superlattices : (a) without artificial roughness, (b) with 2.7

artificial roughness on Ni and (c) 2.7 A on Mo. The profiles on the left are taken
around the first order main Bragg reflections, the profiles on the right around the
second order.
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additional disorder. When the amount of disorder increases, this is no longer true. In samples
with an additional 3.3 A of additional roughness, the second order superlattice peaks are no
longer resolved. The refinement procedure can then only give a lower limit of the disorder
(=3.5A). The first order satellite peaks are still clearly tesolved and give a more accurate
measure of the roughness.

Shown in Fig. 4 are the parameters obtained from the structural refinement for all the
Mo/Ni samples with artificial roughness. The amount of refined roughness is graphed versus the
amount of artificial roughness for three sets of Mo/Ni superlattices. The points correspond to
samples with additional roughness added to the Mo or Ni layers individually or to both layers
and represent an average determined from averaging the (111) and (222) values. Solid and open
symbols represent roughness values on Mo and Ni respectively. The solid line is the expected
relation between the refined roughness and artificial roughness assuming 1A of discrete

roughness intrinsic to the layers, Srefinea =¥ 1A% + 82 ;5. ;01 . Excellent quantitative agreement
is obtained for all the samples which clearly shows that an additional amount of disorder of less
than a single lattice spacing can be quantitatively determined.
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Fig. 4 The refined roughness versus artificial roughness for seven
[Mo(13A)/Ni(16A)]150 (circles), ten [Mo(20A)/Ni(224)]139 (squares) and four
[Mo(27A)/Ni(33A)]g (triangles) superlattices. Open symbols are the roughness of
Mo layers, the full symbols of Ni layers. The line gives the expected behavior
assuming 1.0 A intrinsic roughness.

In many metallic superlattice systems such as Mo/Ni, the average lattice spacing
d=A/(Na+Ng) [13] which can be directly measured from the x-ray diffraction profile has been
found to expand with decreasing A [13,14]. Structural refinement allows a determination of the

individual lattice spacing. Shown inFig, 5 is the refined values of the average Mo and Ni lattice
spacing (the layer thickness divided by the number of layers) for the series of samples discussed

in Fig. 3 and 4. There is systematic expansion in the Ni layer with decreasing A, with little

change in the average Mo lattice spacing. This is consistent with the measured expansion in d
[13].
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Fig. 5 Refined values for the average Mo (110) and Ni (111) lattice spacing for the
same series of samples shown in Fig. 4. Error bars represent the standard
deviation of the refined values all the samples at a given A. Dashed lines give the
bulk values.

Some insight into the origin of the lattice expansion can be found by examining the
refined values that determine the strain of the layer. Because of the interdependency of the

individual lattice parameters of the layer d, Ad;, and Ady, the uncertainty of these parameters
tend to be larger than the uncertainty of the average lattice spacing shown in Fig. 5. However,

clear trends in Ad; and Adp above the uncertainty in the refinement can be obtained. For Mo, the
strained parameters Admoe; = AdMez = -0.04 + 0.04A indicatin g very little strain in the Mo
layers. In contrast, the Ni layers are asymmetrically strained with Adyy; = 0.13£0.05A and

Adpiz = -0.04£0.04A. The asymmetry in the strain profile in the Ni is a common feature in the
refinement of Mo/Ni superlattices. It is difficult to reproduce qualitatively some details of the x-

ray profile without including the Ni strain profile. Adw;; corresponds to the Ni-Mo interface
where the Ni is grown on the Mo. This implies that much of the lattice expansion results from
the growth of Ni on Mo in Mo/Ni superlattices.

The x-ray diffraction profile from MBE grown Pb/Ge superlattices were discussed
extensively in a recent article by D. Neerinck et al.[11]. They found that by including both
discrete and continuous random fluctuations in layer thickness, they could obtain good agreement
with the high angle results in fitting the number of finite size maxima. But using the high angle
results, no quantitative agreement could be reached for the low angle region, which shows more
finite size structure than predicted by the fluctuations deduced from the high angle region.
Shown in Fig 6a is the low angle spectrum for the [Pb (43A)/Ge(384)]s superlattice. The
calculated profile is calculated using a recursive optical theory [15-17] assuming 1A of
cumulative roughness on both layers. There is excellent agreement between the measured and
calculated profile in both relative peak width and intensity. If the discrete disorder of the Pb layer
is increased, both the finite size and Bragg peaks are broadened much more than the measured
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Fig. 6: (a) Low angle x-ray diffraction profile of a [Pb(45.44)/Ge(29.5A)]5
superlattice where the open circles are the measured intensity and the solid line is a
simulation assuming 1A of layer thickness fluctuation of both layers. (b) High
angle profile of the same superlattice where open circles are the measured intensity
and solid line is the refined profile.
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profile. The limit of the discrete disorder as determined from the low angle profile is =2A which
is smaller than the value determined by Neerinck et. al. from the high angle profile.

To understand the high angle profile requires the inclusion of intra-layer disorder
described by equations (5) and (6). There are no indications of superlattice structure and only the
finite size of individual Pb layers is observed resulting from the continuous disorder of the Ge
layer[5]. The best fit results for the Pb layer is given by line in Fig. 6b. The Pb lattice spacing
was 2.846A. The asymmetry in the finite size peak intensities are explained by a slight lattice

expansion near the interface of Adpy; = Adpyz = 0.03A. The intra-layer disorder was & = 0.06A
and the discrete disorder was one monolayer (=3A). Although the discrete disorder values is
higher than determined by low angle, it is much better agreement than the value determined
without the inclusion of intra-layer disorder

A number of other Pb/Ge profiles with Pb thicknesses ranging from 40 - 90 A were fit in
a similar fashion and found that they were consistently best fit by including an intra-layer
disorder of 0.04 - 0.06A. The origin of the intra-layer disorder may arise from the low substrate
temperature during growth (77K), which is needed to grow continuous thin (<250 A) Pb films.
The low temperature may inhibit the atoms mobility and the formation of a well defined
crystalline structure.

CONCLUSION

We have developed a general procedure for the structural refinement of superlattices from
the x-ray diffraction profiles which can provide quantitative information about the lattice spacing
and disorder of the superlattice. A general kinematic diffraction formula, which includes lattice
strains and random discrete and continuous disorder is combined with a non-linear fitting
algorithm to fit the entire x-ray profile. The procedure is applied to a crystalline/crystalline Mo/Ni
superlattices where disorder was introduced during the growth procedure. The amount of
disorder is quantitative determined by refinement of the x-ray diffraction profile. By including
intra-layer disorder, the diffraction profiles of MBE grown Pb/Ge superlattices can be fit
quantitatively. The Superlattice Refinement from X-rays (SUPREX) program is available by
writing to the authors (IKS or YB) directly.
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